Literature Review - Tabular Format | Paper Name | Year | Method Used | Datasets Used | Results Obtained | |------------|------|--|---|---| | 10.pdf | 2025 | 1D and 2D
Convolutional Neural
Networks, ADASYN | Private dataset of
Arabic audio clips | Testing accuracy of 94.28%, Validation accuracy of 95.55% | | 1.pdf | 2024 | Multi-Kernel Extreme
Learning Machine
(MKELM) with a
weighted
classification
scheme | FAE corpus | 84.72% accuracy | | 2.pdf | 2024 | LSTM neural
network on Mel
spectrograms | In-house English
speech database of
four Arabic accents
(Jordan, Iraq, Saudi
Arabia, Tunisia) | 79% recognition rate | | 5.pdf | 2024 | Adaptive deep learning model: Hamilton neural network classifier using features from multi-scale product analysis | Not explicitly named in the provided text | Significant
performance gains
compared to current
HNN-based
approaches | | 3c.pdf | 2022 | Fusion of multiple classifiers: ensemble of classifiers on short-term spectral features, i-vector classifier, and transformer models for linguistic features | Arabic Dialect
Identification (ADI)
dataset | 82.44% classification accuracy | | 7.pdf | 2021 | Deep Neural Networks, combination of convolutional and recurrent layers, end-to-end training, beam search decoder with a tetra-gram language model | Aldiri, KACST,
Isolated Words,
Arabic News
Channel, KSU,
MGB-2 | 14% error rate | | 6.pdf | 2020 | Voting ensemble
combining Naive
Bayes, Logistic
Regression, and
Decision Tree
classifiers | NADI shared task
Twitter data set | F-measure of 27.17,
41.34, and 52.38 for
different
methodology and
clustering
configurations | | 4.pdf | 2016 | Classifier ensemble with linear Support Vector Machine base classifiers using character n-grams and word unigrams | Transcribed speech corpus from the Arabic Dialect Identification sub-task of the 2016 Discriminating between Similar Languages shared task | F1-score of 0.51 | |-------|------|--|---|--| | 8.pdf | 2014 | Mel-frequency
cepstral coefficients
(MFCCs), wavelet
transform, Support
Vector Machine
(SVM), K-Nearest
Neighbor (K-NN),
Naïve Bayes (NB) | Proprietary dataset
of Jordanian and
Egyptian dialect
audio samples | Error rate of 9.78% | | 9.pdf | 2012 | Maximum Likelihood
Linear Regression
(MLLR), Maximum
A-Posteriori (MAP)
adaptation,
grapheme-based
acoustic models,
phoneme sets
normalization | Modern Standard
Arabic (MSA) news
broadcast speech,
Egyptian Colloquial
Arabic (ECA) corpus,
Levantine Colloquial
Arabic (LCA) corpus | Significant increase in recognition accuracy |